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ABSTRACT glﬁ\

The problem of instability in contrastreaming streams of plasma
or self-gravitating gas clouds is investigated for general propagation
direction, using moment equations. A uniform rotation is also included
in view of its astrophysical importance. Conditions for instability
(monotonic or growing wave) are derived. It is found that the classi-
cal Jeans' wavelength for fragmentation of interstellar medium is con-
siderably diminished due to interstreaming speeds. For a non-gravita-
ting plasma it is concluded that perturbations propagating normal to
the interstreaming direction lead to a montonic instability. This !
instability, though characterized by a small growth rate, should be
possible to observe in laboratory plasmas if dimensions are suitably |
chosen to eliminate the conventional electrostatic two-stream

instability.




I. INTRODUCTION

Contrastreaming plasmas are a common occurrence in nature e.g. in
colliding galaxies, plasma streams from M-regions, solar flares in the
background solar wind. This makes the investigation of the possibility
of excitation of stable or unstable oscillations due to collectiwve
interactions in contrastreaming plasmas an important question. Various
investigations of the two-stream instability in collisionless plasmas,
both cold and warm, have been reported1, but they have been restricted

to electrostatic perturbations in non-gravitating plasmas. The electro-

static instability arises due to electrostatic interactions arising

from a charge separation produced by wave propagation along the
streaming direction so that the magnetic field remains unperturbed. In
general, the system is subject to a perturbation propagating at any
angle to the streaming motion. It is of interest, therefore, to explore
whether electromagnetic interactions, due to a perturbed magnetic field,
can lead to an instability in contrastreaming plasmas. Again in astro-
physical situations (e.g. interpenetrating'star streams) the streams

are self-gravitating and endowed with a large-scale galactic rotation.
The two problems--namely contrastreaming instability in collisionless
plasmas and stellar streams--are essentially alike except for the im-
portant difference that gravitational interactions are always attractive
(as against attractive and repulsive forces in charges constituting a
plasma), and that the self-gravitational field is not neutralized as in

an ionized gas which is electrically neutral. It may be mentioned that

cooperative phenomena in collisionless stellar streams (in the absence

. . 2
of rotation and magnetic field) have recently been studied by Sweet™.




The purpose of the present paper is to present a unified treatment
of two-stream instability for general perturbations for ionized streams
or self-gravitating streams of unionized gas including the effect of a
uniform rotation and prevailing uniform interstellar magnetic field.

We shall make use of the moment equations for a warm, collisionless
plasma. These equations will naturally preclude phenomena like Landau
damping. The results obtained, though exact for cold configurations,
would, it is hoped, represent reasonably well the situations including

thermal effects.




11. INITIAL STATE

Consider the two unbounded, homogeneous, plasma streams interpene-
trating with equal and opposite speeds Uo,-Uo. The ions and electrons
of either stream will be assumed to move together so that there is no
initial electric current in either medium, and be characterized by
equal temperatures. The two streams will be supposed to be self-gravi-
tating and subject to the simultaneous effect of a homogeneous rotation
and magnetic field. In homogeneous, isothermal streams we are required,
as shown below, to take the prevailing magnetic field Bo, the rotation
vector 3, and the streaming motion Up, all parallel to one another in
order that the steady state equations are consistently satisfied for

both streams.

The initial state is governed by the following equations with

Tespect to a rotating frame of reference,
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where the symbols have their usual meaning. For gravitating streams of

unionized gas the equations (6) and (7) have no meaning and we have
equation (5) together with two equations out of equations (1) - (4)

without the electromagnetic quantities.




Equating equations (1) and (3) we obtain,
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which must be satisfied for the initial state. Thus for beams charac-

terized by homogeneous pressures we must have
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so that the three vectors Uo, ( , Qj, [Larmor frequency e, for

jth particle, (electron or;ion)j are parallel.

-

Again for a gravitating gas stream we need to satisfy
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for each beam. This leads to the equilibrium relation
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ITI. PERTURBATION EQUATIONS
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of the streaming plasma are written as,

Y : : Y Vix B o
il SR O A L RERCTS

+—“")'VCE -y (\x(-n*":)

The moment equations defining the time-dependent perturbed state
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Here
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The equilibrium quantities are shown with a suffix '0O' and the
corresponding perturbations are denoted by small letters. In equations
(14), (17) and (19) summation includes ions and electrons for both the
beams. The quantity Sj stands for the characteristic sound speed

(: kT);//mj ) for the jth particle.

From equatiors (17) and (18) we obtain
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Assuming the perturbations to be of the form
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we write equation (21) as,



o
- AES SUNATAL

(23)
The expression for nj is obtained from equation (13) as
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The Poisson's equation (14) yields
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The equation of motion (12) can be rewritten, using equations (24)
and (25) as
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The equation (23) is rewritten as,
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The equations (27) and (28) constitute the coupled set of equations
for the problem under investigation. Clearly for gravitating inter-
penetrating streams.the perturbation equation is (27) with right hand
side put equal to zero. It may also be noted that the rotation vector
occurs in the perturbation equation (27) along with the Larmor frequency

term, and we can therefore speak of an effective Larmor frequency vector

o — (1\:‘) 2 (}) in the presence of rotation.

Let us.now fix the direction of the wave number vector k as the
X-axis and assume the parallel vectors Upj and a to have two components,
for generality, in the x and z directions. We may now eliminate dE from
equations (27) and (28) and write the final perturbation equations in

component form as
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(31)
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The equatlons (29 (31) constitute in all twelve equations (three
for electrons and three for ions) for both beams taken together. The
summation is over both electrons and ions in the two beams and would thus
consist of four terms. For gravitating unionized streams there will be,
in all, six equations (three for each beam) with each summation having
only two terms. The self-gravitation term occurs only in the equation
(31), which on comparison with the last summation term reveals that the
contribution from self-gravitation in an ionized gas is negllgible

compared to the contribution from the charged particles as P°;;//
4nG N, m

independent of charged particle density, is always much larger than
unity. Thus so far as we are dealing with ionized streams, the self-
gravitation effect is entirely negligible. We may, therefore, discuss
the case of unionized gravitating gas separately from the ionized

(plasma) streams.
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IV, ELECTRON OSCILLATIONS IN PLASMA STREAMS

Having seen that the self-gravitational effects are negligible
so long as the ﬁlasma frequency is not zero, we may, for simplicity,
consider the case of electron oscillations only in interpenetrating
plasma streams. This approximation is reasonable in view of large
mass of the ions which can therefore be regarded as unperturbed unless

the frequency of oscillation is small.

A, Field-free non-rotating plasma streams

For a configuration of interpenetrating plasma streams
in the absence of magnetic field and rotation, it is easy to obtain the
dispersion relation for electron oscillations from equations (29) - (31),

This is written as
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Here suffixes 1 and 2 refer to the two beams, and all quantities Up,
S, @Wp refer to electrons.
For the particular case of parallel propagation (k || Uo), we
put Uox = O and obtain
2
2 w
“h + B A
/ Tt =
v 2gt (23)
(w-R. \)a) (wik. W) - RS 72
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This is the well-known dispersion relation for electrostatic instability
in contrastreaming field-free plasmas. For identical plasma streams

(wp1 = Wp>; S; = S2) the configuration is stable for all wave lengths

of perturbation so far as the streaming velocity is less than the thermal

speed. In case Uo > S, the configuration is monotonically unstable for

k < k*_where k*ls given by

'3 29p
% = -5 (34)
V-6

In the unstable range of wavelengths there exists a mode of maximum

instability defined by,

—
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i VS
where PJ = U"//S . %m ownd )QW respectively denote

the growth rate and the wave number of the mode of maximum instability.
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To see whether instability may arise when wave propagation vector
k is inclined to the streaming direction, let us consider the particular
case of transverse propagation k y Uy. For this case we put kelUo = o in
equation (32) and obtain for identical interpenetrating plasma streams,

the dispersion relation as,

w‘!_ w (ch— S")h}+ 2 W; v h‘g’(é)&:z 00;)- :lqu,; w; -0

The equation (37) shows that the configuration of field-free plasma
streams are unstable monotonically for propagation normal to the streaming

if the following inequality is satisfied,

2w {(V5- s*)

k oy

—

(38)

Clearly the streams characterized by Uo < S are stable as was the case
for k H Uo. For a pressureless configuration (cold streams) it may be
noted that there is instability for all wavelengths transverse to
streaming motion. Thus even those wavelengths which were stable for
wave vector along streaming are, strictly speaking, unstable when they
propagate normal to the streaming direction. We conclude, therefore,
that cold interpenetrating streams are, in general, unstable for all k.
Again there exists a mode of maximum instability in this case

too

b =3
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defined by
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The electromagnetic instability (k L Ug) is characterized by a
very small growth rate and so should be masked by the electrostatic
instability when both are simultaneously present. It should, however,
be possible to observe k 1 Uo instability by a proper choice of

plasma dimensions thus getting rid of the electrostatic instability.

B. Plasma streams with field and rotation

When the interpenetration of plasma streams takes place
along the direction of external uniform magnetic field, the results are
well-known for the case of parallel propagation i.e. k H Uo. We may
recapitulate by noting that the longitudinal oscillations (involving
the perturbation velocity component parallel to the magnetic field)
are unaffected by the presence of the magnetic field, leading to the

same dispersion equation as (33). 1n addition to a longitudinal mode
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we obtain a mixed transverse mode in the presence of a uniform magnetic

field, the results for which are also well-known (Bernstein and TrehanB).

‘ Let us now investigate in particular the case of propagation normal
to the streaming motion (k | Uo) in the presence of a uniform magnetic
field (and/or rotation). After some simplifications on equations (29),

(30) and (31) we obtain the dispersion relation as
(b +Rs% of (SR @+ o))+ | Ry of (e k- wr‘;)]
v aa A ameor | aRM oA
+[‘~¥:( —3\!-(‘—"#:-»“’5))—0’9: (a;+fum)] [m'k% % ~ J

a*
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For identical plasma streams the equation (41) leads to

* 7 & =
004 _ 03.[’;—(6'1-51) + 0;-:&- aw, 4-015‘:\- o;f)@fﬁ}Q“k) 2 h\%*% -0
' (42)

The equation (42) shows that the overstability (growing wave
instability) is absent, but that the configuration of cold plasmas is
monotonically unstable if the wave number of transverse perturbation

exceeds a certain critical value given by
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Thus contrastreaming cold plasmas are completely stabilized by a

strong enough prevailing magnetic field (or rotation) defined by

» ﬁw Uo)g
oy = I

For warm plasma streams we conclude that there is no overstability
possible and the configuration is stable for all k when Uo < S, or

the field is stronger than defined by

o _ 2w (V=)
* c

in case Uo > S. The configuration shows monotonic instability only in

P 2
case a? s QA% (()o—ﬁ_) for a range of wave-
2’ Cg,

numbers defined by
Y

n <4 22
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2 2 2 2 2 2
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208 ka2 e - 240 oy~ 24 (U5 2)

(45)
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V. GRAVITATING STREAMS WITH ROTATION

For interpenetrating streams of unionized gas characterized by a
self-gravitation the relevant equation is (27) with right hand side
pat zero. The summation is over the particles (or stars in stellar
streams) constituting the two streams. The dispersion relation, as

obtained by simplifying equation (27), is finally written as,

[(w Re§ 1 - m - k’s,’]

2 (w_h UO)
S~ (w-k.Ue =
ATy Ny M2 Moo k3 - (oo-k ) fo-R.) -
™ N K5~ (wrRVo) 4 0 (onRVe)’
‘(-u“'k_-‘A))L-. a_{z. - (47)

To digress the general dispersion equation (47) we may consider
the special cases of parallel propagation (k || Uo Il @) and perpendicu-

lar propagation (k 4 Uo, Q).

A. Parallel Propagation (k || Uc).

In this case ay = 0, and the dispersion relation (A?)

2 2 s 4. 3
(3= Rus )~ RS, (orRVe) - RS (w-RVo) » 'S5
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which is a fourth degree polynomial in (4 the parameter deciding the
question of stability of the configuraticn For streams of identical
stellar masses and number densities and having same thermal velocities,

the dispersion equation (48) reduces to

o ...zw‘[)f(o:f S‘) —ANG M No] + ;f(v:-sl)[ha(kﬁ—st) +3VGm No] -0

(49)
This expression, independent of rotation, -educes to the well-known
Jeans' criterion for fragmentation of int. rstellar gas for the case
Uo = 0. The analysis of equation (49) reve ls that two interpenetrating
gravitating streams do not show any overstat tity if Up <« S. In this
case the configuration is monotonically unstedle for
)zl < 8WG ™ No
L W %
(S—Uo) (50)

and stable for
817G No

ki 7 _(— & Uol)

The significance of this result (equation 50) s in the modification
of the Jeans' criterion for fragmentation due to tl: interpenetrating
interstellar clouds. The classical Jeans' theory (U = o) led to a

critical size so large that it is impossible for star: to be formed with
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masses less than about 500 times the sclar mass, This prompted various
workersA'to think of some operative mechanisms which could result in
star condensations of much smaller masses. In equation (50) we find that
the critical wavelength A*(-T- zyykf) (above which there is
montonic instability) is reduced by the presence of interpenetrating
speeds and goes down to zero for Up = S. The intersteilar medium is by
no means quiescent and such interpenetrating speeds are quite likely to
occur. We may, therefore, surmise that the essential condition for
monotonic instability (Uo < -S) is likely to be satisfied
in various regions of interstellar gas and would thus play a part in
fragmentations leading to star formation of much smaller masses than
given by the classical Jeans' theory. Similar results were obtained

by Sweetz, although the question of whether instability would lead to
fragmentation or only to a conversion of the initial streaming energy
to disordered energy till the linearized theory breaks down, is still

open.

Again the streaming motion may exceed the thermal velocities
(f“ ) KhV.Iscc:) for the interstellar conditions. In that case the
equation (49) predicts a growing wave instability (overstability) for

a range of wave numbers given by,

A
L, angm Vo \t{!-—s—mx
= U
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If we neglect the thermal effects altogether the corresponding con-

ditions for instability to manifest are,

k> 1__‘.__6__'%_'2‘3 (ovvustabiﬂ;ra,)
U

and

k%<<;4—“?3fh;?k! (\hnoroyanQV 5"~5*h>hiL35)
Uy (52)

Thus we may say that for cold gravitating stellar systems the
situation is unstable for all relative streaming, through overstability
for high values of streaming velocities (or wave number for a given Uo)

and through monotonic increase of amplitude for slow streaming.

B. Perpendicular Propagation (k . Uo)

In this case k.Uo = 0, and the dispersion relation (47)

gives

W~ @ [l o+ K ($+S) _aw G, Ngy + ™, Noi)]

~4

+ 0y Ios: v (& &) _AamG (m, Ny +™M Nos) \

HQS:S: ~49NG KM,NQ\ % Fm, NO'—S‘> = 9

This equation for identical gravitating streams leads to
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With equilibrium rotation as defined by equation (11) the equation

(54) gives two stable modes.
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